The MCP9903/MCP9904 are high accuracy, low cost, System Management Bus (SMBus) temperature sensors. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model including 45nm, 65nm and 90nm processors) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications.
The MCP9903 monitors three temperature channels and the MCP9904 monitors four temperature channels. It provides ±1ºC accuracy for both external and internal diode temperatures.
Resistance Error Correction automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors each external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features plus ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications.
Features
Programmable SMBus Address
Support for diodes requiring the BJT/transistor model
supports 45nm and advanced CPU thermal diodes
Automatically determines external diode type and optimal settings
Resistance Error Correction
2 External Temperature Monitors
±1°C max accuracy (-40°C < TREMOTE < 125°C)
0.125°C resolution
Supports up to 2.2nF diode filter capacitor
Anti-parallel diodes for extra diode support
Internal Temperature Monitor
±1°C accuracy (-40°C < TAMBIENT < 65°C)
±0.125°C resolution
3.3V Supply Voltage
Programmable temperature limits for ALERT#
Available in these RoHS compliant packages
10-pin MSOP
Applications
Remote Radio Unit (RRU)
Basestation
Refrigeration
Industrial
Embedded applications
MCP9903 封装图
型号 | 制造商 | 描述 | 购买 |
---|---|---|---|
MCP9903T-AE/9Q | CUI Inc. | 立即购买 | |
MCP9903T-2E/9Q | CUI Inc. | 立即购买 | |
MCP9903T-1E/9Q | CUI Inc. | 立即购买 |
产品特点 传输时间扩展 40ps; 抗磁性3T; 光电阴极Hi-QE; 门控可选; 8mm、16mm或18mm使用直径。 技术信息 Photonis的MCP-PMT具有高线性度特性,在光电burst
相较于内含MCU的混合式半数位电源控制的LEDDriver,MCP1633在价格上相对低廉许多,而使用上也和DEPA系列的MCP19xxxLowsideMOSFETdriver也非常类似,可以
相较于内含MCU的混合式半数位电源控制的LEDDriver,MCP1633在价格上相对低廉许多,而使用上也和DEPA系列的MCP19xxxLowsideMOSFETdriver也非常类似,可以
磁场 与普通光电倍增管(PMT)的使用相比,微通道板(Microchannel Plate,MCP)受到磁场的影响比较小。磁场对MCP使用影响的大小取决于磁场与MCP通道轴之间的方向。图1显示
相较于内含MCU的混合式半数位电源控制的LEDDriver,MCP1633在价格上相对低廉许多,而使用上也和DEPA系列的MCP19xxxLowsideMOSFETdriver也非常类似,可以
相较于内含MCU的混合式半数位电源控制的LEDDriver,MCP1633在价格上相对低廉许多,而使用上也和DEPA系列的MCP19xxxLowsideMOSFETdriver也非常类似,可以
相较于内含MCU的混合式半数位电源控制的LEDDriver,MCP1633在价格上相对低廉许多,而使用上也和DEPA系列的MCP19xxxLowsideMOSFETdriver也非常类似,可以
硅表征数据用于确定非线性传感器的特性。从该数据中得出一个描述传感器典型性能的方程式。确定方程的相应系数后,这些系数将用于计算典型传感器非线性的补偿。
MCP1702 | MJH11022 | MOC3073M | MC74VHC1GT125 |
MIC2124 | MMBFJ110 | MC100LVEL90 | MCP6G02 |
MMBTA63L | MC14504B | MMBFJ270 | MCP6V31 |
MOC3071M | MCP6N11 | MOCD208M | MMBF4391 |
MC74HC73A | MCP3201 | MC14013B | MIC2165 |