电子百科
音频分析的原理主要涉及数字信号处理的基本理论、音频分析的基本方法以及音频参数测量和分析内容,其中数字信号处理是音频分析的理论基础。
1.音频分析技术基础 傅里叶变换和信号的采样是进行音频分析时用到的最基本的技术。傅立叶变换是进行频谱分析的基础,信号的频谱分析是指按信号的频率结构,求取其分量的幅值、相位等按频率分布规律,建立以频率为横轴的各种“谱”,如幅度谱、相位谱。信号中,周期信号通过傅立叶级数变换后对应离散频谱,而对于非周期信号,可以看作周期 T 为无穷大的周期信号,当周期趋近无穷大时,则基波谱线及谱线间隔(ω=2π /T)趋近无穷小,从而离散的频谱就变为连续频谱。所以,非周期信号的频谱是连续的。 在以计算机为中心的测试系统中,模拟信号进入数字计算机前先经过 A/D 变换器,将连续时间信号变为离散时间信号,称为信号的采样。然后再经幅值量化变为离散的数字信号。这样,在频域上将会出现一系列新的问题,频谱会发生变化。由模拟信号变成数字信号后,其傅立叶变换也变成离散傅立叶变换,涉及到采样定理、频率混叠、截断和泄漏、加窗与窗函数等一系列问题。
2.音频分析方法 通常在对某音频设备音频测量分析时,该设备被看成是一个具有输入端口和输出端口的黑箱系统。将某种己知信号输入该系统,然后从输出端获取输出信号进行分析,从而了解该系统的一些特性,这就是音频分析的一般方法。输入音频设备的信号,称作激励信号。激励信号可以是正弦、方波等周期信号,也可以是白噪声、粉红噪声等随机信号,还可以是双音、多音、正弦突发等信号。最常用的检测分析方法有正弦信号检测、脉冲信号检测、最大长度序列信号检测等。
1、基本参数测量:音频测量中需要测量的基本参数主要有电压、频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。 频率是音频测量中最基本的参数之一。通常利用 作为基准来测量信号的频率。测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高, 信噪比是音频设备的基本性能指标,是信号的有效电压与噪声电压的比值。
2、时域分析:时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号的时域波形来评定设备的相关性能。最常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。 方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为最常用的时域分析信号。
3、频域分析:频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及最大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
4、时频分析:时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否清晰,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
5、失真分析:音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中最重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。
早期专业的音频信号分析仪种类很少,在做音频测量时一般是利用万用电表、频率计、示波器及频谱仪等组合成一套音频测试系统。这种测试系统中间环节多,各环节之间接口匹配较为困难,使用起来比较麻烦,测量结果往往也不精确。
近年来出现的音频信号分析仪也与仪器的主流发展趋势一致,朝着高度集成化、智能化的方向发展,这些仪器集成了复杂音频信号发生装置、功率放大装置等,具备了一些初步的图形化分析功能,使用户很容易组建音频测量系统。